1,5-Ph₃Ge and 1,6-Bu₃Sn Group Transfer from Enoxy Oxygen to Alkoxy Oxygen Sunggak Kim,* Jung Yun Do, and Kwang Min Lim Department of Chemistry, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea (Received April 22, 1996) 1,5-Ph₃Ge and 1,6-Bu₃Sn group transfer from enoxy oxygen to alkoxy oxygen are observed in radical reaction of keto epoxides and keto oxetanes, respectively. Recently, we reported 1,5-Bu₃Sn and 1,6-Bu₃Sn group transfer from allylic carbon to alkoxy oxygen^{1,2} and 1,5-Me₃Si group transfer from enoxy oxygen to alkoxy oxygen.3 In connection with our continuing interest in radical rearrangements involving Group 4 elements, we turned our attention to 1,n-germyl transfer reactions. Previously, 1,2-organogermyl group transfer from oxygen to nitrogen was reported.⁵ We initially studied the possibility of 1,5-Ph₃Ge group transfer from allylic carbon to alkoxy oxygen. When vinyl epoxide 1 was treated with Ph₃GeD/AIBN in refluxing benzene for 3 h under the highly diluted condition using a syringe pump, a mixture of 4a and 4b was isolated in 69% yield, indicating that 1,5-H transfer⁶ took place without any indication of 1,5-Ph₃Ge group transfer. Considering the previous result on 1,5-Bu₃Sn group transfer,¹ the result obtained here is somewhat surprising. At the present, we have no explanation as to why the different result was observed in this reaction. ## 1,5-Ph₃Ge Transfer from O to O Table 1. 1,5-Ph₃Ge transfer from enoxy oxygen to alkoxy oxygen | substrate | time, h | yield,% ^a | |--------------------------------|---------|--| | R^1 | | O OGePh ₃ R ¹ R ² | | a. n=1; $R^1 = Me$, $R^2 = H$ | 24 | 65 % ^b (20 %) | | b. $n=1$; R^1 , $R^2=Me$ | 24 | 67 % (28 %) | | d. $n=3$; R^1 , $R^2=H$ | 14 | 91 % | | | 14 | OGePh ₃ 60 % (13 %) | | | 14 | OGePh ₃ | | | 14 | OG
G=GePh ₃ : 42 %
=H: 35 % | ^a The yield refers to the isolated yield. The numbers in the parentheses indicate the yield of the recovered starting material. ^b a 1:1 diasteromeric mixture We next studied the interesting possibilities of 1,5-Ph₃Ge and 1,6-Ph₃Ge group transfer from enoxy oxygen to alkoxy oxygen. The reaction of keto epoxide 5 with Ph₃GeD/AIBN in refluxing benzene (0.05M) for 24 h afforded a mixture of 1,5-Ph₃Ge group transferred product 9 (72%) and the starting material 5 (20%). Repeating the reaction in refluxing toluene under the same conditions gave a similar result. The structure of 9 was determined by ¹H NMR and ¹³C NMR spectra.⁷ The deuterium α to the carbonyl in 9 is evident from the fact that methylene protons α to the germyloxy group showed two doublets (J=9.6 Hz) at 3.68 ppm in ¹H NMR. Moreover, the deuteriated carbon atom showed a triplet at 54.9 ppm in ¹³C NMR due to splitting by deuterium. Apparently, the reaction proceeded via an alkoxyradical intermediate 6, in which 1,5-Ph₃Ge group transfer from enoxy oxygen to alkoxy oxygen took place. Moreover, it is of interest that the direct quenching product 8 was not obtained even under relatively concentrated solution (0.5M), suggesting that 1,5-Ph₃Ge group transfer should be very fast. On the basis of the reported rate constant of ca. 9 x10⁷ M⁻¹sec⁻¹ (27 °C) for quenching alkoxy radicals by Ph₃GeH,8 the rate constant for 1,5-Ph₃Ge group transfer would be approximately 10¹⁰ sec⁻¹ at 80 °C. Further experimental examples are shown in Table 1. We also examined compound 10 to see whether the radical cyclization via the radical translocation by 1,5-Ph₃Ge group transfer could be effected. When 10 was treated with Ph₃GeH/AIBN in refluxing benzene (0.05M) for 10 h afforded 13 in 67% yield, which demonstrated the effectiveness of 1,5-Ph₃Ge group transfer. It is noteworthy that 1,5-H and/or 1,6-H transfer from carbon to oxygen did not occur in 11. We next studied the possibility of the 1,6-Ph₃Ge transfer from enoxy oxygen to alkoxy oxygen. The reaction of keto oxetane 14 (n=2) with Ph₃GeH/AIBN in refluxing benzene for 24 h did not occur. When the reaction was carried out in refluxing xylene using di-*tert*-butyl peroxide as an initiator, the reaction did not occur after prolonged stirring, yielding a small amount of the decomposed products. Since 1,6-Ph₃Ge group transfer from enoxy oxygen to alkoxy oxygen was unsuccessful, we briefly studied the possibility of 1,6-Bu₃Sn group transfer reactions from enoxy oxygen to alkoxy oxygen. Reaction of 14 (n=2) with Bu₃SnD/AIBN in refluxing benzene for 18 h proceeded slowly, yielding a 89:11 mixture of 1,6-Bu₃Sn group transferred product 19 and the direct quenching product 18. When the reaction was carried out in refluxing xylene using di-*tert*-butyl peroxide as an initiator, the reaction time was shortened to 5 h. A similar result was also obtained with 14 (n=3). Since it is well known that 1,5-H transfer from allylic carbon to alkoxy oxygen is an extremely fast process,⁶ and 1,5-H Table 2. 1,6-Bu₃Sn transfer from enoxy oxygen to alkoxy oxygen | substrate | initiator | solvent | time, h | yield(%)a | 19/18 ^b | |-----------|-----------|---------|---------|-----------|--------------------| | n = 2 | AIBN | benzene | 18 | 90 | 89/11 | | n = 2 | DTBPc | xylene | 5 | 87 | 90/10 | | n = 3 | AIBN | benzene | 16 | 84 | 88/12 | ^a Isolated yields.^b The ratio was determined by ¹H NMR. ^c DTBP = di-*tert*-butyl peroxide. transfer was noted previously in the reaction of vinyl oxetanes with Bu₃SnH/AIBN,² it was quite surprising that we were unable to detect the formation of 17. This study was financially supported by OCRC (KOSEF). ## References and Notes - 1 S. Kim, S. Lee, and J. S. Koh, *J. Am. Chem. Soc.*, **113**, 5106 (1991). - 2 S. Kim and K. M. Lim, J. Chem. Soc., Chem. Commun., 1993, 1152. - 3 S. Kim, J. Y. Do, and K. M. Lim, J. Chem. Soc., Perkin Trans. 1, 1994, 2517. - a) S. Kim and K. M. Lim, Tetrahedron Lett., 34, 4851 (1993); b) Y. -M. Tsai and C. -D. Cherng, Tetrahedron Lett., 32, 3515(1991); c) A. G. Davies and M. -W. Tse, J. Organometal. Chem., 155, 25 (1978); d) C. G. Pitt and M. S. Fowler, J. Am. Chem. Soc., 90, 1928 (1968). - 5 R. West and P. Boudjouk, J. Am. Chem. Soc., 95, 3983 (1973). - a) A. L. J. Beckwith and K. U. Ingold, "Rearrangement in Ground and Excited States" ed by P. de Mayo, Academic Press, New York (1980), Vol.1, p161; b) D. P. Curran, D. Kim, H. T. Liu, and W. Shen, J. Am. Chem. Soc., 110, 5900 (1988); c) S. Kim and J. S. Koh, J. Chem. Soc., Chem. Commun., 1992, 1377; d) S. Kim and J. S. Koh, Tetrahedron Lett., 33, 7391 (1992). - 7 **9:** 1 H NMR (200 MHz, CCl₄-C₆D₆) δ 7.48~7.26 (m, 15H), 3.68 (dd, J_{gem} =9.6 Hz, 2H), 2.30 (m, 2H), 1.78~1.52 (m, 4H), 1.50~1.17 (m, 4H); 13 C NMR (50 MHz, CCl₄-C₆D₆) δ 212.1, 135.2, 134.9, 130.1, 128.6, 66.6, 54.9, 43.9, 30.2, 29.1, 28.1, 24.8. - 8 C. Chatgilialoglu, K. U. Ingold, J. Lusztyk, A. S. Nazran, and J. C. Scaiano, *Organometallics*, **2**, 1332 (1983).